

Microsoft

MCSD: Windows Store Style

Apps Using C# Certification

70-485: Advanced Store style

App Development using C#
Version 1.0

www.firebrandtraining.com

www.firebrandtraining.com

1

1 1.

Module 1

Windows Store App Essentials

2 1.

Course and Exam Contents

55 questions

130 minutes

3 case studies

Develop Windows
Store apps

17%

Discover and
interact with

devices
16%

Program user
interaction

17%

Enhance the user
interface

16%

Manage data and
security

17%

Prepare for a
solution

deployment
17%

MSDN study links for Exam 70-485: Advanced Metro style App Development using C#
http://www.jayway.com/2012/12/05/msdn-study-links-for-exam-70-485-advanced-metro-style-app-development-using-c/

2

3 1.
Common Questions

async and await work as a pair

By using the new async and await keywords, you can use

resources to create an asynchronous method almost as

easily as you create a synchronous method

private async Task<int> AccessTheWebAsync()
{
 HttpClient client = new HttpClient();
 Task<string> getStringTask =
 client.GetStringAsync("http://msdn.microsoft.com");
 DoIndependentWork(); // executes while async op works
 string urlContents = await getStringTask;
 return urlContents.Length;
}

async modifier, Task<T> return type, Async suffix for name

Waits until task is complete, control returns to

the caller of AccessTheWebAsync

4 1.
Common Questions

Catching Exceptions with Asynchronous Operations

As long as you call the asynchronous operation inside a try

block, any exception will get caught

private async Task<int> AccessTheWebAsync() {
 HttpClient client = new HttpClient();
 try {
 Task<string> getStringTask =
 client.GetStringAsync("http://msdn.microsoft.com");
 DoIndependentWork(); // executes while async op works
 string urlContents = await getStringTask;
 return urlContents.Length;
 }
 catch (Exception ex) {
 // handle exception
 }
}

3

5 1.
Common Questions

Asynchronous Tasks

To execute any method as an asynchronous task, use a

generic task factory

•Calling StartNew is functionally equivalent to creating a

Task<TResult> using one of its constructors and then calling Start to

schedule it for execution

var t = Task<string>.Factory.StartNew(() => GetName());
string name = await t;

TaskFactory.StartNew<TResult> Method (Func<TResult>)
http://msdn.microsoft.com/en-us/library/dd321455.aspx

1

1 2.

Module 2

Implementing Animations and Transitions

2 2.
Implementing Animations and Transitions

Contents

Exam Topic: Create animations and transitions

 Apply animations from the animation library

 Create and customize animations and transitions, including XAML transitions

 Implement storyboards and transformations

Utilize built-in animations for controls

Animating your UI (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/library/windows/apps/hh452701.aspx

2

3 2.

Visual States

Apps run on a variety of screen sizes and under various view

states

• A user might have your app snapped to the side of a 25-inch desktop

monitor, or fill the screen of a 10-inch tablet

Getting the most out of your pixels - adapting to view state changes
http://blogs.msdn.com/b/windowsappdev/archive/2012/04/19/getting-the-most-out-of-your-pixels-adapting-to-view-
state-changes.aspx

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="FullScreenLandscape"/>
 <VisualState x:Name="Filled"/>
 <VisualState x:Name="FullScreenPortrait"> ...
 <VisualState x:Name="Snapped"> ...

4 2.
Animation

Property Path Syntax

For animations, a property path is used to define the

connection between the named animation target object’s

property and the intended target animation property, by

traversing object-property relationships in the property

values

Storyboards Overview
http://msdn.microsoft.com/en-us/library/ms742868.aspx

<TransformGroup x:Key="MyTransformGroupResource">
 <ScaleTransform />
 <RotateTransform />

<DoubleAnimation Storyboard.TargetName="Rectangle02"
 Storyboard.TargetProperty="RenderTransform.Children[1].Angle" ... />

PropertyPath XAML Syntax
http://msdn.microsoft.com/en-us/library/ms742451.aspx

<Rectangle Name="Rectangle02"
RenderTransform="{StaticResource MyTransformGroupResource}">

3

5 2.
Animation

How to Create a Storyboard using Code

Rectangle myRectangle = new Rectangle();
// set rectangle properties with fills and so on
LayoutRoot.Children.Add(myRectangle);
Duration duration = new Duration(TimeSpan.FromSeconds(2));
DoubleAnimation myDoubleAnimation1 = new DoubleAnimation();
DoubleAnimation myDoubleAnimation2 = new DoubleAnimation();
myDoubleAnimation1.Duration = duration;
myDoubleAnimation2.Duration = duration;
Storyboard sb = new Storyboard();
sb.Duration = duration;
sb.Children.Add(myDoubleAnimation1);
sb.Children.Add(myDoubleAnimation2);
Storyboard.SetTarget(myDoubleAnimation1, myRectangle);
Storyboard.SetTarget(myDoubleAnimation2, myRectangle);
Storyboard.SetTargetProperty(
 myDoubleAnimation1, new PropertyPath("(Canvas.Left)"));
Storyboard.SetTargetProperty(
 myDoubleAnimation2, new PropertyPath("(Canvas.Top)"));
myDoubleAnimation1.To = 200;
myDoubleAnimation2.To = 200;
LayoutRoot.Resources.Add("unique_id", sb);
sb.Begin();

6 2.

Theme Animations

ThemeAnimation Represents the preconfigured animation that:

DragItem… Applies to item elements being dragged

DragOver… Applies to the elements underneath an element being dragged

DropTargetItem… Applies to potential drop target elements

FadeIn/FadeOut

ThemeAnimation

Applies to controls when they are first shown or removed from the UI or hidden

PointerUp/Down

ThemeAnimation

Runs after a user taps down on an item or element (and the tap action is

released)

PopIn/PopOut

ThemeAnimation

Applies to pop-in components of controls (for example, tooltip-like UI on an

object) as they appear/are closed/removed (this animation combines opacity

and translation)

Reposition… Use to animate an object that is being repositioned

SplitOpen/Close Reveals a target UI using a split animation

SwipeBack/

SwipeHint

Applies to controls when an element slides back into its layout slot after a Swipe

interaction or indicates that a Swipe gesture is now possible

Windows.UI.Xaml.Media.Animation classes
http://msdn.microsoft.com/en-us/library/windows/apps/jj218361.aspx

4

7 2.

Theme Transitions

ThemeTransition Provides the animated transition behavior:

AddDelete

ThemeTransition

When controls add or delete children of a panel, for example, if you have a

collection of photos displayed in a Grid, you can associate this animation to the

Grid so that when photos are added or deleted, the photos will animate in and

out of view

Content

ThemeTransition

When the content of a control is changing (might be applied in addition to

AddDeleteThemeTransition)

EdgeUI… For an edge UI transition

Entrance

ThemeTransition

When controls first appear (use on individual objects or on containers of

objects, in which case, child elements will animate into view in sequence rather

than all at the same time)

Pane… For a panning UI transition

PopUp

ThemeTransition

Applies to pop-in components of controls (for example, tooltip-like UI on an

object) as they appear

Reorder

ThemeTransition

When list-view controls items change order, typically due to a drag-drop

operation, different controls and themes potentially have varying

characteristics for the animations involved

Reposition… Reacts to layout moves when no context is set and a trigger of move is passed

1

1 3.

Module 3

Implementing Globalization and Localization

2 3.
Implementing Globalization and Localization

Contents

Exam Topic: Design Windows Store apps for globalization and localization

 Implement .resw files to translate text

 Implement collation and grouping to support different reading directions

 Implement culture-specific formatting for dates and times

Warning! These topics sometimes appear on the 70-484 exam.

Introduction to globalization and localization
http://channel9.msdn.com/Blogs/One-Dev-Minute/Introduction-to-globalization-and-localization

2

3 3.
Localization

Resource Files

Windows 8 introduces a new resource model for Windows

Store apps that replaces the hub-and-spoke model common

to .NET Framework desktop apps

• Compiled Windows Store apps use a single resource file, called a

package resource index (PRI) file and stores resources for all

languages, cultures, and scale factors

To define separate languages, use sub-folders named using

ISO code, each with a Resources.resw file in each

• /fr-FR/Resources.resw, /en-GB/Resources.resw, and so on

• The .resw file format is identical to the .resx file format, except that

.resw files may contain only strings and file paths

Quickstart: Translating UI resources (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh965329.aspx

Creating and retrieving resources in Windows Store apps
http://msdn.microsoft.com/en-us/library/windows/apps/hh694557.aspx

4 3.
Localization

Loading Resource Strings Using x:Uid directive

Provides a unique identifier for markup elements

• For Windows Runtime XAML, this unique identifier is used by XAML

localization processes and tools, such as using resources from a .resw

resource file

Your resource file should contain an entry for the resource

named "GoButton.Content" (or just "GoButton" to set the

default property for a control)

• Content in this case is a specific property that’s inherited by the

Button class

• You might also provide localized values for other properties of this

button, for example you could provide a resource-based value for

"GoButton.FlowDirection"

x:Uid directive
http://msdn.microsoft.com/en-us/library/windows/apps/hh758297.aspx

<Button x:Uid="GoButton" Content="Go"/>

3

5 3.
Localization

Loading Resource Strings Using Code

ResourceLoader class provides simplified access to app

resources such as app UI strings

• GetString: Returns the most appropriate string value of a resource,

specified by resource identifier

• GetStringForReference: Returns the most appropriate string value of a

resource, specified as a Uri for a resource identifier

• GetStringForUri: Returns the most appropriate string value of a

resource, specified by a Uniform Resource Identifier (URI) resource

identifier

ResourceLoader class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

var loader = new Windows.ApplicationModel.Resources.ResourceLoader();
var text = loader.GetString("Farewell");

1

1 4.

Module 4

Branding and a Seamless UI

2 4.
Branding and a Seamless UI

Contents

No Exam Topics!

1

1 5.

Module 5

Advanced Data Scenarios in a Windows Store App

2 5.
Advanced Data Scenarios in a Windows Store App

Contents

Exam Topic: Save and retrieve files from the file system

Handle file streams

 Save and retrieve files by using StorageFile and StorageFolder classes

 Set file extensions and associations

 Save and retrieve files by using the file picker classes

 Compress files to save space

 Access libraries, including pictures, documents, and videos

Optimize loading XAML (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/library/windows/apps/hh994641.aspx

Exam Topic: Design and implement data caching

 Choose which types of items (user data, settings, app data) in an app

should be persisted to the cache according to requirements

 Choose when items are cached

 Choose where items are cached (Windows Azure, remote storage)

 Select the caching mechanism

Accessing data and files (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh758319.aspx

2

3 5.

File Access Declarations

Apps that need programmatic access to user resources such

as the Documents library or removable storage must declare

the appropriate capability

• The documentsLibrary capability provides programmatic access to the

user’s Documents library, filtered to the file type associations

declared in the package manifest, to support offline access to

SkyDrive

• The removableStorage capability provides programmatic access to

files on removable storage, such as USB keys and external hard drives,

filtered to the file type associations declared in the package manifest

• For example, if a DOC reader app declared a .doc file type

association, it can open .doc files in the Documents library, but not

other types of files

App capability declarations (Windows Store apps)
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx

4 5.

Access the File System Efficiently

Accessing files can be expensive due to disk latency and

memory/CPU cycles to store the data

• When you want to access a large collection of files and you want to

access property values other than the typical Name, FileType, and

Path properties, access them by creating QueryOptions and calling

SetPropertyPrefetch

Access the file system efficiently (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh994634.aspx

var queryOptions = new Windows.Storage.Search
 .QueryOptions(CommonFileQuery.OrderByDate, null);
queryOptions.SetThumbnailPrefetch(ThumbnailMode.PicturesView,
 100, ThumbnailOptions.ReturnOnlyIfCached);
queryOptions.SetPropertyPrefetch(
 PropertyPrefetchOptions.ImageProperties,
 new string[] {"System.Size"});
var queryResults = KnownFolders.PicturesLibrary
 .CreateFileQueryWithOptions(queryOptions);

3

5 5.

CommonFolderQuery

Specifies whether the query is shallow or deep and the

sorting criteria to use to group files into folders

• DefaultQuery, GroupByYear, GroupByMonth, GroupByArtist,

GroupByAlbum, GroupByAlbumArtist, GroupByComposer,

GroupByGenre, GroupByPublishedYear, GroupByRating, GroupByTag,

GroupByAuthor, GroupByType

Do not confuse with read-only DateStackOption!

• For example, if you create a QueryOptions object using

CommonFolderQuery.GroupByMonth the DateStackOption property

will contain the DateStackOption.Month value

CommonFolderQuery enumeration
http://msdn.microsoft.com/library/windows/apps/BR207957

var picturesLibrary = Windows.Storage.KnownFolders.PicturesLibrary;
var storageFolderQueryResults = picturesLibrary.CreateFolderQuery(
 Windows.Storage.Search.CommonFolderQuery.GroupByMonth);

6 5.

FileInformationFactory

Used to load information about files and folders from the

results of a query and to bind these file system items to

ListView and GridView controls

• GetFilesAsync: Retrieves a collection of FileInformation objects that

contain information about StorageFile objects

• GetFoldersAsync: Retrieves a collection of FolderInformation objects

that contain information about StorageFolder objects

• GetItemsAsync: Retrieves a collection of IStorageItemInformation

objects that contain information about all the items in the collection

• GetVirtualizedFilesVector, GetVirtualizedFoldersVector,

GetVirtualizedItemsVector: Gets a virtualized vector of

IStorageItemInformation objects that can be bound to controls

FileInformationFactory class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.bulkaccess.fileinformationfactory

4

7 5.

Roaming Data

Any user can benefit from roaming application data as long

as they are using a Microsoft Account to log on to their

device

Do

• Do use roaming for preferences and customizations

• Do use roaming to let users continue a task across devices

Do NOT

• Don’t use roaming for information that is local to a device

• Don’t use roaming to move large datasets

• Don’t use roaming for instant syncing or for frequently changing

information

Guidelines for roaming application data
http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx

8 5.

Providing a Save Location

Consider declaring the file save picker to provide your app

as a location where the user can save files if your app

connects the user to a service that hosts their files

Integrating with file picker contracts (Windows Store apps)
http://msdn.microsoft.com/en-us/library/windows/apps/hh465174.aspx

5

9 5.

Local Application Data

Get the settings in an ApplicationDataContainer object

Create a container

• Always means the container should be created if it does not exist

Check your container exists before writing to it

Quickstart: Local application data (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh700361.aspx

using Windows.Storage;
var localSettings = ApplicationData.Current.LocalSettings;

var container = localSettings.CreateContainer("exampleContainer",
 ApplicationDataCreateDisposition.Always);

if (localSettings.Containers.ContainsKey("exampleContainer")) {
 localSettings.Containers["exampleContainer"]
 .Values["exampleSetting"] = "Hello Windows";

1

1 6.

Module 6

Creating Reusable Controls and Components

2 6.
Creating Reusable Controls and Components

Contents

Exam Topic: Create custom controls

 Choose the appropriate base control to create a custom control template

 Style a control through control templates

 Design the control template to respond to changes in viewstate

Exam Topic: Create and consume WinMD components

 Create a WinMD component in C#

 Consume a WinMD component

Handle WinMD reference types

 Reference a WinMD component

2

3 6.
Custom Controls

Collection and Data Controls to Derive From

Control Description Example

FlipView A control that presents a

collection of items that the user

can flip through, one item at a

time

GridView A control that presents a

collection of items in rows and

columns that can scroll

horizontally

ListView A control that presents a

collection of items in a list that

can scroll vertically

Controls by function (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh465345.aspx

4 6.
Custom Controls

Default Style Keys

All controls have a default style that is applied

automatically, for example Button, by searching for a style

for the matching Type

• In the Essentials course we saw how you can override this either using

TargetType or applying a named style

When creating custom controls, you will often want to

override the default style key used otherwise your control

will continue to use its parents default style

public class MyButton : Button {
 public MyButton() {
 this.DefaultStyleKey = typeof(MyButton);
 }
}

FrameworkElement.DefaultStyleKey Property
http://msdn.microsoft.com/en-us/library/system.windows.frameworkelement.defaultstylekey.aspx

3

5 6.
WinMD

Windows Runtime Components

You can use managed code to create your own Windows

Runtime types for use in Windows Store apps with C++,

JavaScript, Visual Basic, or C#

•The fields, parameters, and return values of all the public types and

members must be Windows Runtime types

•A public class or interface cannot be generic and must be sealed

• For overloads with the same number of parameters, you must apply

the DefaultOverloadAttribute to only one of those overloads which is

the only one you can call from JavaScript

Creating Windows Runtime Components in C#
http://msdn.microsoft.com/en-us/library/windows/apps/br230301.aspx

public sealed class MyType

public string OverloadExample(string s) { ... }
[Windows.Foundation.Metadata.DefaultOverload()]
public int OverloadExample(int x) { ... }

1

1 7.

Module 7

Implementing Advanced Contract Scenarios

2 7.
Implementing Advanced Contract Scenarios

Contents

Exam Topic: Implement printing by using contracts and charms

 Implement the print contract

 Create a custom print template

 Construct a print preview

Handle print pagination

 Implement in-app printing

 Expose printer settings within your app

Exam Topic: Implement Play To by using contracts and charms

 Register your app for Play To

Use PlayToManager to stream media assets

 Register your app as a PlayToReceiver

Streaming media to devices using Play To (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/library/windows/apps/hh465183.aspx

Print from your app
http://channel9.msdn.com/Blogs/One-Dev-Minute/Print-from-your-app

2

3 7.
Printing

Initialization

The PrintManager class informs Windows that an application

wishes to participate in printing

•Also used for programmatically initiating printing

•You must first call the GetForCurrentView method

•You must add a listener for the PrintTaskRequested event

PrintManager class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.printing.printmanager

PrintManager mgr = PrintManager.GetForCurrentView();
mgr.PrintTaskRequested += mgr_PrintTaskRequested;
PrintDocument doc = new PrintDocument();
IPrintDocumentSource source = doc.DocumentSource;
// Add an event handler which creates preview pages.
doc.Paginate += CreatePrintPreviewPages;
// Add an event handler which provides a specified preview page.
doc.GetPreviewPage += GetPrintPreviewPage;
// Add an event handler which provides all final print pages.
doc.AddPages += AddPrintPages;

4 7.
Printing

PrintTaskRequested

When a user selects a printer on the Devices charm, the

PrintTaskRequested event is raised

After the print task is created, the PrintManager requests a

collection of print pages to show in the print preview UI by

raising the Paginate event

Quickstart: Printing from your app (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh465204.aspx

Printing (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/library/windows/apps/hh465196.aspx

protected virtual void PrintTaskRequested(
 PrintManager sender, PrintTaskRequestedEventArgs e) {
 PrintTask printTask = e.Request.CreatePrintTask(
 "C# Printing SDK Sample", sourceRequested =>
 { sourceRequested.SetSource(source); });
}

3

5 7.
Printing

PrintDocument Events

Your app accesses Windows printing by registering for the

Print contract in each view of the app from which you want

users to be able to print

•Registering for the Print contract means obtaining a PrintManager

object, creating a PrintTask object, and handling the PrintDocument

events

Event Description

AddPages Occurs when the PrintManager requests the final collection of

pages to send to the printer

GetPreviewPage Occurs when the PrintManager requests a particular print page to

be shown in the preview window

Paginate Occurs when the PrintManager requests the collection of print

pages to be shown in the preview window

6 7.
PlayTo

PlayToManager

If your application includes audio, video, or image

elements, users can stream the media source for those

elements to a Play To target device

The PlayToManager class has these members

• SourceRequested event: when a user requests media to stream to a

Play To target device

• SourceSelected event: when a Play To source element has been

selected

•GetForCurrentView(): the Play To manager for the current view

• ShowPlayToUI(): displays the Play To UI

•DefaultSourceSelection property (default true): enables or disables

the default source selection for Play To

PlayToManager class
http://msdn.microsoft.com/library/windows/apps/br206972

4

7 7.
PlayTo

Disabling Default Source Selection

An app that contains media elements has Play To enabled by

default

• If a user invokes the Devices charm while running the app and selects

a target device to stream media to, Play To will stream the media

from the first audio, video, or image element on the current page

•You can disable this default behavior by setting the

DefaultSourceSelection property to false

PlayToManager.DefaultSourceSelection
http://msdn.microsoft.com/en-US/library/windows/apps/windows.media.playto.playtomanager.defaultsourceselection

var ptm = Windows.Media.PlayTo.PlayToManager.GetForCurrentView();
ptm.DefaultSourceSelection = false;

8 7.
PlayTo

SourceRequested Event

You can select which media is streamed by using the

SourceRequested event

• In Play To, video starts from the current position

• If you want to start the video from the beginning, seek to the

beginning when the Play To connection is established

Quickstart: Using Play To in applications (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-US/library/windows/apps/hh465191

using Windows.Media.PlayTo;

private PlayToManager ptm = PlayToManager.GetForCurrentView();

protected override void OnNavigatedTo(NavigationEventArgs e) {
 ptm.SourceRequested += sourceRequestHandler; }

private void sourceRequestHandler(PlayToManager sender,
 PlayToSourceRequestedEventArgs e) {
 e.SourceRequest.SetSource(mediaElement.PlayToSource);
}

5

9 7.
PlayTo

Deferrals

Use a deferral when you want to make an asynchronous call

to retrieve the media element to stream

•Play To will then wait for you to supply the media element until you

mark the deferral as complete

• If you create a deferral and the wait time exceeds the Deadline

property, Play To will continue without a source element

PlayToSourceDeferral class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.playto.playtosourcedeferral

private void sourceRequestHandler(PlayToManager sender,
 PlayToSourceRequestedEventArgs e)
{
 var deferral = e.SourceRequest.GetDeferral();
 // Async call to get source media
 var element = await getMediaElementAsync();
 e.SourceRequest.SetSource(element.PlayToSource);
 deferral.Complete();
}

1

1 8.

Module 8

The Windows Push Notification Service

2 8.
The Windows Push Notification Service

Contents

The Windows Push Notification Services (WNS) enables

third-party developers to send toast, tile, badge, (all UI

updates) and raw (app-defined) updates from their own

cloud service

• The WNS authentication scheme is implemented using the client

credentials profile from the OAuth 2.0 protocol

• The cloud service authenticates with WNS by providing its credentials

(Package SID and secret key)

Exam Topic: Notify users by using Windows Push Notification Service (WNS)

 Authenticate with WNS

 Request, create, and save a notification channel

 Call and poll the WNS

Push notification overview (Windows Store apps)
http://msdn.microsoft.com/library/windows/apps/hh913756.aspx

2

3 8.
WNS

Authentication

Before you can send notifications through WNS, you must

register your app with the Dashboard

• When you register your app with the Dashboard, you are given

credentials—a Package security identifier (SID) and a secret key—

which your cloud service will use to authenticate itself

How to authenticate with the Windows Push Notification Service (WNS)
http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx

4 8.
WNS

Send the cloud server’s credentials to WNS

Send credentials in an HTTPS authentication request,

including the required parameters in the "application/x-

www-for-urlencoded" format

• grant_type=client_credentials

• client_id=[replace with Package Security Identifier (SID)]

• client_secret=[replace with client secret]

• scope=notify.windows.com

POST /accesstoken.srf HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: https://login.live.com
Content-Length: 211

grant_type=client_credentials&client_id=ms-app%3a%2f%2fS-1-15-2-2972962901-
2322836549-3722629029-1345238579-3987825745-2155616079-
650196962&client_secret=Vex8L9WOFZuj95euaLrvSH7XyoDhLJc7&scope=notify.win
dows.com

3

5 8.
WNS

Authentication Response from WNS

A response of "200 OK" indicates that the authentication was

successful and that the response includes an access token

for the cloud server to use with any notifications it sends,

until that access token expires

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Length: 422
Content-Type: application/json

{
 "access_token":"EgAcAQMAAAAALYAAY/c+Huwi3Fv4Ck10UrKNmtxRO6Njk2MgA=",
 "token_type":"bearer"
}

Push notification service request and response headers
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx

6 8.
WNS

Authorization

The authorization header is used to specify the credentials

of the calling party, following the OAuth 2.0 authorization

method for bearer tokens

The syntax consists of a string literal "Bearer", followed by a

space, followed by your access token

Authorization
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_auth

Authorization: Bearer <access-token>

4

7 8.
WNS

X-WNS-Type

These are the notification types supported by WNS. This

header indicates the type of notification and how WNS

should handle it

After the notification reaches the client, the actual payload

is validated against this specified type

X-WNS-Type
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_type

X-WNS-Type: wns/toast | wns/badge | wns/tile | wns/raw

8 8.
WNS

Authentication Example (Part 1 of 2)

[DataContract]
public class OAuthToken
{
 [DataMember(Name = "access_token")]
 public string AccessToken { get; set; }
 [DataMember(Name = "token_type")]
 public string TokenType { get; set; }
}

private OAuthToken GetOAuthTokenFromJson(string jsonString)
{
 using (var ms = new MemoryStream(
 Encoding.Unicode.GetBytes(jsonString)))
 {
 var ser = new DataContractJsonSerializer(typeof(OAuthToken));
 var oAuthToken = (OAuthToken)ser.ReadObject(ms);
 return oAuthToken;
 }
}

5

9 8.
WNS

Authentication Example (Part 2 of 2)

protected OAuthToken GetAccessToken(string secret, string sid)
{
 var urlEncodedSecret = HttpUtility.UrlEncode(secret);
 var urlEncodedSid = HttpUtility.UrlEncode(sid);

 var body = string.Format("grant_type=client_credentials&" +
 "client_id={0}&client_secret={1}&scope=notify.windows.com",
 urlEncodedSid, urlEncodedSecret);

 string response;
 using (var client = new WebClient())
 {
 client.Headers.Add("Content-Type",
 "application/x-www-form-urlencoded");
 response = client.UploadString(
 "https://login.live.com/accesstoken.srf", body);
 }
 return GetOAuthTokenFromJson(response);
}

1

1 9.

Module 9

Capturing Media

2 9.
Capturing Media

Contents

Exam Topic: Capture media with the camera and microphone

Use CameraCaptureUI to capture pictures or video

Use MediaCapture to capture pictures, video, or audio

 Configure camera settings

 Set media formats

Handle media capture events

Adding multimedia (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/library/windows/apps/hh465134.aspx

2

3 9.

Media Capture

MediaCapture class

• Provides functionality for capturing photos, audio, and videos from a

capture device, such as a webcam

• InitializeAsync() must be called before you can start capturing, and

will launch a consent prompt to get the user’s permission for the app

to access the microphone or camera

The MediaCapture class has these three properties

• AudioDeviceController: Gets an object that controls settings for the

microphone

• MediaCaptureSettings: Gets the configuration settings for the

MediaCapture object

• VideoDeviceController: Gets an object that controls settings for the

video camera

MediaCapture class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.capture.mediacapture.aspx

4 9.

Common Media Properties

AudioDeviceController properties

• Muted, VolumePercent

MediaCaptureSettings properties

• CameraSoundRequiredForRegion,

ConcurrentRecordAndPhotoSupported, PhotoCaptureSource,

StreamingCaptureMode, and so on

VideoDeviceController properties

• Brightness, Contrast, Exposure, FlashControl, Focus, Hue,

IsoSpeedControl, Pan, Roll, Tilt, Whitebalance, Zoom, and so on

• Properties are of type MediaDeviceControl with methods:

TryGetAuto(), TryGetValue(), TrySetAuto(), TrySetValue() and a

Capabilities property

MediaDeviceControl class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.devices.mediadevicecontrol.aspx

3

5 9.

Checking Media Capabilities

Properties such as Zoom are MediaDeviceControl

• TryGetAuto(), TryGetValue(), TrySetAuto(), TrySetValue()

• Capabilities property

MediaDeviceControlCapabilities class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.devices.mediadevicecontrolcapabilities.aspx

Property Description

AutoModeSupported Queries whether the camera supports automatic adjustment of

the setting

Default Gets the default value of the camera setting

Max, Min Sets the maximum or minimum value of the camera setting

Step Gets the step size for the setting

Supported Indicates whether the camera supports this camera setting

double zoomValue = 0.0;
bool zoom = video.Zoom.TryGetValue(out zoomValue);

6 9.

How to Create a File in a Known Folder

Access to common locations that contain user content

• In order to access the folder and libraries represented by the

properties of this class, you must declare the necessary capabilities in

your app manifest

• CameraRoll, DocumentsLibrary, HomeGroup, MediaServerDevices,

MusicLibrary, PIcturesLibrary, Playlists, RemovableDevices,

SavedPictures, VideosLibrary

All are of type StorageFolder class (see next slide)

KnownFolders class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders

4

7 9.

How to Create a File in a Known Folder

StorageFolder class

• CreateFileAsync(String)

• CreateFileAsync(String, CreationCollisionOption)

• GenerateUniqueName (automatically appends a number if a file or

folder already exists with that name), ReplaceExisting, FailIfExists

(default), OpenIfExists

StorageFolder class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefolder.aspx

StorageFolder storageFolder = KnownFolders.DocumentsLibrary;
StorageFile storageFile = await storageFolder.CreateFileAsync(
 "sample.mp3", CreationCollisionOption.GenerateUniqueName);

8 9.

Choosing a Media Encoding Profile

Describes the encoding profile for an audio or video file

• Encoding profile includes descriptions of the audio and video encoding

formats, and a description of the media container

• Methods: CreateAvi, CreateFromFileAsync, CreateFromStreamAsync,

CreateM4a, CreateMp3, CreateMp4, CreateWav, CreateWma,

CreateWmv

• The encoding quality Auto is a special preset that fills in the proper

settings based on the current camera settings

MediaEncodingProfile class
http://msdn.microsoft.com/library/windows/apps/hh701026

var mediaProfile = MediaEncodingProfile.CreateMp3(
 AudioEncodingQuality.Auto);

using Windows.Media.MediaProperties;

5

9 9.

Recording to a Media Encoding Profile

Some MediaCapture methods

• CapturePhotoToStorageFileAsync

• StartPreviewAsync

• StartRecordToCustomSinkAsync

• StartRecordToStorageFileAsync (most commonly used)

• StartRecordToStreamAsync

• StopRecordAsync

• Media sinks are the pipeline objects that receive media data

Media Sinks
http://msdn.microsoft.com/en-us/library/windows/desktop/ms701626(v=vs.85).aspx

mc = new Windows.Media.Capture.MediaCapture();
await mc.StartRecordToStorageFileAsync(mediaProfile, storageFile);

MediaCapture.StartRecordToStorageFileAsync
http://msdn.microsoft.com/en-us/library/windows/apps/hh700863.aspx

1

1 10.

Module 10

Background Tasks

2 10.
Background Tasks

Contents

Exam Topic: Create background tasks

 Implement the Windows.ApplicationModel.Background classes

 Implement the IBackgroundTask interface

Exam Topic: Consume background tasks

Use timing and system triggers

 Keep communication channels open

 Request lock screen access

Use the BackgroundTransfer class to finish downloads

Exam Topic: Design for and implement UI responsiveness

 Choose an asynchronous strategy for your app

 Implement the Task Parallel library for multi-processor utilization

 Convert asynchronous operations to tasks

2

3 10.
Background Tasks

Links

Quickstart: Create and register a background task (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/library/windows/apps/hh977055.aspx

Quickstart: Update a live tile from a background task
http://msdn.microsoft.com/library/windows/apps/jj991805.aspx

Asynchronous Programming with Async and Await (C# and Visual Basic)
http://msdn.microsoft.com/library/hh191443(vs.110).aspx

General best practices for performance
http://msdn.microsoft.com/library/windows/apps/hh994633.aspx

Performance best practices for Windows Store apps using C++, C#, and Visual Basic
http://msdn.microsoft.com/library/windows/apps/hh750313.aspx

Supporting your app with background tasks (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh977056.aspx

4 10.
Background Tasks

What Are They?

Run your own lightweight code in the background by

responding to triggers

• Provide functionality when your app is suspended or not running

• For real-time communication apps like VOIP, mail, and IM

Background tasks implement IBackgroundTask interface

• Has a Run method that passes in an IBackgroundTaskInstance that

allows the task to interact with the current run process

• The implementation must reside in a WinRT component library

• All public classes within a WinRT component are required to be

sealed, so your background tasks will always be a sealed class

public sealed class SampleBackgroundTask : IBackgroundTask {
 public void Run(IBackgroundTaskInstance taskInstance) {
 // do work

3

5 10.
Background Tasks

Triggers

Background tasks must be assigned to a single trigger that’s

responsible for determining when and how frequently a task

will be executed

Background Tasks in Windows Store Apps
http://visualstudiomagazine.com/articles/2013/05/01/background-tasks-in-windows-store-apps.aspx

Trigger Description

Control Channel Used for high-availability, real-time apps that maintain open socket

connections; allows the app to run in a low-power mode until data is

received across the socket

Push Notification Raw notification from the Windows Notification Service

Maintenance Time-based, fires at a given time interval, but only if the device is

plugged into a power source

Timer Time-based, fires at a given time interval, but requires the app to

be added to the lock screen to function

System Event Register a task to a variety of predefined system events

6 10.
Background Tasks

Registering with BackgroundTaskBuilder

Registers an implementation of IBackgroundTask with a

trigger, a unique name and any optional conditions

• Each registered task must have a unique name within the scope of the

app

• By default, each background task will execute within a special

process, BackgroundTaskHost.exe

var builder = new BackgroundTaskBuilder();
builder.Name = "MySampleTask";
builder.TaskEntryPoint = "BackgroundTasks.MyBackgroundTask";
builder.SetTrigger(new SystemTrigger(
 SystemTriggerType.NetworkStateChange, false));
// use builder.SetCondition(...) if you need conditions
var ret = builder.Register();

How to register a background task (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/library/windows/apps/jj553413.aspx

4

7 10.
Background Tasks

Manifest Designer

You can define aspects of your Windows Store app, such as

background task declarations, by using the App Manifest

Designer

Using the Manifest Designer (Windows Store apps)
http://msdn.microsoft.com/en-us/library/windows/apps/br230259.aspx

8 10.
Background Tasks

System Events

Respond to system-generated events by registering a

background task with the SystemTrigger class

Your app can also run tasks as frequently as every 15

minutes by using the maintenance trigger

• Only run when the device is plugged in to AC power

Trigger Description

InternetAvailable The Internet becomes available

NetworkStateChange A network change such as a change in cost or

connectivity occurs

OnlineIdConnectedStateChange Online ID associated with the account changes

SmsReceived A new SMS message is received by an installed

mobile broadband device

TimeZoneChange The time zone changes on the device (for example,

when the system adjusts the clock for daylight

saving time)

5

9 10.
Background Tasks

Conditions

You can control when the background task runs, even after

it is triggered, by adding a condition

• Once triggered, a background task will not run until all of its

conditions are met

Condition Description

InternetAvailable The Internet must be available

InternetNotAvailable The Internet must be unavailable

SessionConnected The session must be connected

SessionDisconnected The session must be disconnected

UserNotPresent The user must be away

UserPresent The user must be present

10 10.
Background Tasks

Lock Screen-Capable Apps

Apps can be placed on the lock screen to show real-time

information to the user at a glance

• Real-time triggers can be used to run lightweight custom code in the

background for apps that are on the lock screen

• The user must place your app on the lock screen before the app can

use these background tasks

Trigger Description

Control Channel Background tasks can keep a connection alive, and receive

messages on the control channel, by using the

ControlChannelTrigger

Timer Background tasks can run as frequently as every 15 minutes,

and they can be set to run at a certain time, by using the

TimeTrigger

Push Notification Background tasks respond to the PushNotificationTrigger to

receive raw push notifications

6

11 10.
Background Tasks

System Event Triggers for Lock Screen-Capable Apps

The SystemTriggerType enumeration includes the following

system event triggers that are only usable by lock screen-

capable apps

Trigger Description

UserPresent, UserAway The background task is triggered when the user

becomes present / absent

ControlChannelReset The background task is triggered when a control

channel is reset

SessionConnected The background task is triggered when the session

is connected

LockScreenApplicationAdded,

LockScreenApplicationRemoved

An app tile is added to / removed from the lock

screen

12 10.
Background Tasks

Long-Running and Asynchronous Operations

By default, once the Run method completes, the task-

executing stack is terminated so any asynchronous

operations won’t complete

• Also, each task is given a short period of time to complete its

execution and will be terminated if that time limit is reached

• The IBackgroundTaskInstance which gets passed to the Run method

includes a GetDeferral method that returns a BackgroundTaskDeferral

instance; the executing code won’t complete until the Complete

method is called

Long-Running and Asynchronous Operations
http://visualstudiomagazine.com/Articles/2013/05/01/Background-Tasks-in-Windows-Store-Apps.aspx?Page=2

public void Run(IBackgroundTaskInstance taskInstance) {
 BackgroundTaskDeferral deferral = taskInstance.GetDeferral();
 // do work
 deferral.Complete();
}

1

1 11.

Module 11

Working with Sensors and Devices

2 11.
Working with Sensors and Devices

Contents

Exam Topic: Get data from sensors

 Determine the availability of a sensor (Windows.Devices.Sensors)

 Add sensor requests to the app manifest

Handle sensor events

Get sensor properties

 Determine location via GPS

Exam Topic: Enumerate and discover device capabilities

 Discover the capabilities of a device (for example, GPS, accelerometer, near

field communication, and camera)

Responding to light sensors
http://msdn.microsoft.com/library/windows/apps/hh465287.aspx

Responding to motion and orientation sensors (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/library/windows/apps/hh465294.aspx

Guidelines for location-aware apps (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh465127.aspx

2

3 11.
Sensors

Types

Sensor Description

Accelerometer Detects acceleration along three axes (x, y, and z)

Inclinometer Detects angle of incline along three axes (pitch, roll, and yaw)

Gyrometer Detects angular velocity along three axes

Compass Detects heading in degrees relative to magnetic north (and due north

when integrated with onboard GPS)

Light Detects ambient lighting level in lumens

Orientation Combines data from the accelerometer, compass, and gyrometer

sensors to provide smoother and more sensitive rotation data than

can be obtained from any of the sensors alone

Simple

Orientation

Uses the accelerometer to obtain device orientation as a rotation into

one of four quadrants, or face-up, or face-down

Windows.Devices.Sensors namespace
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.aspx

4 11.
Sensors

Detecting Orientation

This sensor returns a rotation matrix and a Quaternion that

can be used to adjust the user’s perspective

OrientationSensor class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.orientationsensor.aspx

if(OrientationSensor.GetDefault() != null) // if sensor exists
 _sensor = OrientationSensor.GetDefault();

-sensor.ReportInterval = 15000; // 15 seconds minimum interval
_sensor.ReadingChanged += new TypedEventHandler<OrientationSensor,
 OrientationSensorReadingChangedEventArgs>(ReadingChanged);

async private void ReadingChanged(object sender,
 OrientationSensorReadingChangedEventArgs e) {
 await Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 SensorQuaternion quaternion = e.Reading.Quaternion;
 // quaternion.X, quaternion.Y, quaternion.Z, quaternion.W
 SensorRotationMatrix rm = e.Reading.RotationMatrix;
 // rm.M11, M12, M13, M21, M22, M23, M31, M32, M33

3

5 11.
Determine location

Detecting Geolocation

Subscribe to location updates so that your app can respond

to location changes

How to respond to location updates (Windows Store apps using C#/VB/C++ and XAML)
http://msdn.microsoft.com/en-us/library/windows/apps/hh465142.aspx

private Geolocator geo = new Geolocator();

geo.ReportInterval = 15000; // 15 seconds minimum interval
geo.PositionChanged += new TypedEventHandler
 <Geolocator, PositionChangedEventArgs>(geo_PositionChanged);

private void geo_PositionChanged(Geolocator sender,
 PositionChangedEventArgs e) {
 IGeoposition pos =
 (e.Context as IPositionChangedEventArgs).Position;
 // pos.Coordinate.Latitude.ToString();
 // pos.Coordinate.Longitude.ToString();
 // pos.Coordinate.Accuracy.ToString();
}

6 11.
Determine location

Checking the Status of Location Tracking

PositionStatus enumeration
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.positionstatus

PositionStatus indicates the ability of the Geolocator object

to provide location data

Member Description

Ready Location data is available

Initializing This is the status if a GPS is the source of location data and the GPS

receiver does not yet have the required number of satellites in view to

obtain an accurate position

NoData No location data is available from any location provider

Disabled Indicates that the user has not granted the application permission to

access location

NotInitialized If the application has not yet called GetGeopositionAsync or registered

an event handler for the PositionChanged event

NotAvailable The Windows Sensor and Location Platform is not available on this

version of Windows

4

7 11.
Enumerate and discover device capabilities

Watching for Newly Connected Devices

DeviceInformation.CreateWatcher
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.enumeration.deviceinformation.createwatcher

Enumerates devices dynamically, so that the app receives

notifications if devices are added, removed, or changed

after the initial enumeration is complete

• Events: Added, EnumerationCompleted, Removed, Stopped, Updated

• Methods: Start, Stop

• Properties: Status (DeviceWatcherStatus enumeration)

• It first performs an initial enumeration of devices, raising an Added

event for each device that it finds, and raising

EnumerationCompleted when the enumeration is complete

• After the initial enumeration is complete, it raises events when a

device is added, deleted, or updated

DeviceWatcher class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.enumeration.devicewatcher

1

1 12.

Module 12

Generating Revenue with Your Windows Store App

2 12.
Generating Revenue with Your Windows Store App

Contents

Exam Topic: Design and implement trial functionality in an app

 Set up a timed trial

 Set up a feature-based trial

 Set up in-app purchases

 Transition an app from trial to full

Certify your app
http://msdn.microsoft.com/library/windows/apps/hh694079.aspx

2

3 12.

CurrentAppSimulator

Defines methods and properties used to instantiate an

object that you can use to get simulated license info during

testing

• Until the app has been listed in the Windows Store, the CurrentApp

object won't work in the app

• Use the CurrentAppSimulator to test your app’s licensing and in-app

purchases while you develop your app

• After you test your app and before you submit it to the Windows

Store, replace CurrentAppSimulator with CurrentApp

• The CurrentAppSimulator object gets its data from the

WindowsStoreProxy.xml file (example on next slide) in the

%userprofile%\appdata\local\packages\<package-

moniker>\localstate\microsoft\Windows Store\Apidata folder

CurrentAppSimulator class
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.store.currentappsimulator

4 12.

WindowsStoreProxy.xml

<?xml version="1.0" encoding="UTF-16"?>
<CurrentApp>
 <ListingInformation>
 <App>
 <AppId>2B14D306-D8F8-4066-A45B-0FB3464C67F2</AppId>
 <LinkUri>http://apps.windows.microsoft.com/app/2B14D306-D8F8-4066-A45B-0FB3464C67F2</LinkUri>
 <CurrentMarket>en-US</CurrentMarket>
 <AgeRating>3</AgeRating>
 <MarketData xml:lang="en-us">
 <Name>Trial management full license</Name>
 <Description>Sample app for demonstrating trial license management</Description>
 <Price>4.99</Price>
 <CurrencySymbol>$</CurrencySymbol>
 </MarketData>
 </App>
 </ListingInformation>
 <LicenseInformation>
 <App>
 <IsActive>true</IsActive>
 <IsTrial>true</IsTrial> <!-- set to true to test how app behaves in trial mode-->
 <ExpirationDate>2012-01-19T05:00:00.00Z</ExpirationDate>
 </App>
 </LicenseInformation>
 <Simulation SimulationMode="Automatic">
 <DefaultResponse MethodName="LoadListingInformationAsync_GetResult" HResult="E_FAIL"/>
 </Simulation>
</CurrentApp>

3

5 12.

Trial Apps and Features

If customers can use your app for free during a trial period,

you can design your app to exclude or limit some features

during the trial period

• The current license state of your app is stored as properties of the

LicenseInformation class

• If the customer buys your app while it is running, your app can

silently enable the features that are available with a full-license (or

disable the trial-only notices)

• Initialize the CurrentAppSimulator to access the app’s license

• Warning! Before you submit your app to the Windows Store for

certification, replace replace all uses of CurrentAppSimulator with

CurrentApp

Create a trial version of your app
http://msdn.microsoft.com/library/windows/apps/hh694065.aspx

licenseInformation = CurrentAppSimulator.LicenseInformation;

6 12.

How to Enable In-App Purchases

For each in-app purchase feature, create an in-app offer

and add it to your app

Enable in-app purchases from your app
http://msdn.microsoft.com/en-us/library/windows/apps/hh694067.aspx

if (!licenseInformation.ProductLicenses["featureName"].IsActive) {
 try
 {
 // Customer doesn't own this feature, so show purchase dialog.
 await CurrentAppSimulator.RequestProductPurchaseAsync(
 "featureName", false);
 // Check the license state to determine if the in-app purchase
 // was successful.
 }
 catch (Exception) {
 // The in-app purchase was not completed; an error occurred.
 }
} else {
 // The customer already owns this feature.
}

1

1 13.

Module 13

Securing Windows Store App Data

2 13.
Securing Windows Store App Data

Contents

70-484 Exam Topic: Manage Windows Authentication

 Retrieve a user’s roles or claims

 Store and retrieve credentials by using the PasswordVault class

 Implement the CredentialPicker class

70-484 Exam Topic: Manage Web Authentication

Use the Windows.Security.Authentication.Web namespace

 Set up oAuth2 for authentication

 Implement the CredentialPicker class

 Set up single sign-on (SSO)

 Implement credential roaming

 Implement the WebAuthenticationBroker class

Exam Topic: Secure app data

 Encrypt data by using the Windows.Security.Cryptography namespace

 Enroll and request certificates

 Encrypt data by using certificates

2

3 13.

OAuth2 Authentication

Supported OAuth flows

• Implicit grant flow

• Authorization code grant flow

• Sign-in control flow

OAuth 2.0
http://msdn.microsoft.com/en-us/library/live/hh243647.aspx

OAuth 2.0
http://oauth.net/2/

Access Online Services with the Windows Runtime and OAuth
http://msdn.microsoft.com/en-us/magazine/jj883954.aspx

4 13.

Encrypting Data

You can protect data to the

• Local user or computer account

• "LOCAL=user" or "LOCAL=machine"

• Credentials (password) used during logon to a website

• "WEBCREDENTIALS=MyPasswordName,myweb.com"

DataProtectionProvider class
http://msdn.microsoft.com/en-
us/library/windows/apps/windows.security.cryptography.dataprotection.dataprotectionprovider

string strMsg = "This is a message to be protected.";
string strDescriptor = "LOCAL=user";
var encoding = BinaryStringEncoding.Utf8;
var provider = new DataProtectionProvider(strDescriptor);
IBuffer buffMsg = CryptographicBuffer
 .ConvertStringToBinary(strMsg, encoding);
IBuffer buffProtected = await provider.ProtectAsync(buffMsg);

1

1 14.

Module 14

Tracing and Profiling Windows Store Apps

2 14.
Tracing and Profiling Windows Store Apps

Contents

Exam Topic: Design a diagnostics and monitoring strategy

 Design profiling, tracing, performance counters, audit trails (events and

information), and usage reporting

 Decide where to log events (local vs. centralized reporting)

Debugging and testing with Visual Studio
http://msdn.microsoft.com/library/windows/apps/hh441481.aspx

Exam Topic: Design and implement a test strategy

 Recommend a functional test plan

 Implement a coded UI test

 Recommend a reliability test plan (performance testing, stress testing,

scalability testing, duration testing)

 Implement unit testing in an app

Exam Topic: Design for error handling

 Design the app so that errors and exceptions never reach the user

 Application class for global collection

Handle device capability errors

Handle asynchronous errors

2

3 14.

Error Handling

Normally after the UnhandledException event is raised, the

XAML framework terminates the application because the

exception was unhandled

• The application has some control over this – if the

UnhandledException event handler sets the Handled property of the

event arguments to true, then in most cases the application will not

be terminated

Application.UnhandledException event
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.unhandledexception

public class App : Application
{
 public App()
 {
 UnhandledException += (sender, e) => e.Handled = true;
 }
}

4 14.

Environment for Performance Testing

When testing performance you must use

• Release build

• Local Machine deployment target or remote physical device

Do NOT use

• Debug build

• Simulator deployment target

How to profile Visual C# code in Windows Store apps on a local machine
http://msdn.microsoft.com/en-us/library/hh696631.aspx

3

5 14.

Environment for Hardware Device Testing

When testing your app on a hardware device, set

• Target device: Remote Machine

• Remote machine: <name of device>

Start a debugging session in for a Windows Store app Visual Studio (Visual C++, Visual C#, and Visual Basic)
http://msdn.microsoft.com/en-us/library/windows/apps/hh781607(v=vs.120).aspx

6 14.

Choose the Debugger Type to Use

By default, Visual Studio debugs managed code in C# and

Visual Basic apps

• Select the Enable unmanaged code debugging check box to include

native code in your debug session

By default, Visual Studio debugs native code in C++ apps

Debugger Description

Script Only Debug JavaScript code in your app, other code is ignored

Native Only Debug native C/C++ code in your app, other code is ignored

Managed Only Debug managed code in your app, other code is ignored

Mixed Debug native C/C++ code and managed code in your app

GPU only Debug native C++ code that runs on a graphics processing unit

(GPU) on a discrete graphics card

4

7 14.

Setting Up Unit Tests

To set up unit tests

• Create unit test projects (add to your app solution)

• Edit the Manifest for the Unit Test Project (Package.appxmanifest)

• Code and Run the Unit Test

Walkthrough: Creating and Running Unit Tests for Windows Store Apps
http://msdn.microsoft.com/en-us/library/vstudio/hh440545.aspx

Unit testing your metro style apps built using XAML
http://channel9.msdn.com/Events/BUILD/BUILD2011/TOOL-529T

8 14.

Monitoring Your Apps

Analytics and telemetry are two types of data that Microsoft

collects to help you monitor your apps in the Windows Store

and after they have been installed on your customers’

computers

• Analytics refers to the data we collect directly from the Windows

Store, such as app listing views, downloads, and customer ratings and

reviews

• Telemetry refers to the data we collect about your app when it’s

running on customers’ computers. If you enable this feature in your

Windows Store developer account, your app will automatically send

info back to Microsoft about how often it has been launched, how

long it has been running, and whether it has experienced an error

such as crashing or encountering a JavaScript exception

Collecting telemetry data from your apps
http://msdn.microsoft.com/en-us/library/windows/apps/hh967787.aspx

	70-485 Cover Page
	20485B.01.Essentials
	20485B.02.Animations.Transitions
	20485B.03.Globalization
	20485B.04.Branding.UI
	20485B.05.Data.Caching.Files
	20485B.06.Reusable.Components
	20485B.07.Printing.PlayTo
	20485B.08.Push.Notifications
	20485B.09.Capturing.Media
	20485B.10.Background.Tasks
	20485B.11.Sensors.Devices
	20485B.12.Generating.Revenue
	20485B.13.Security
	20485B.14.Tracing.Profiling

