Microsoft - Designing and Implementing a Data Science Solution on Azure

Varaktighet

Varaktighet:

Bara 2 dagar

Metod

Metod:

Klassrum / Uppkopplad / Hybrid

Nästa datum

Nästa datum:

27/3/2023 (Måndag)

Overview

On this accelerated Designing and Implementing a Data Science Solution on Azure course, you will learn how to operate machine learning solutions at cloud scale using Azure Machine Learning.

This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. This course teaches you how to create end-to-end solutions in Microsoft Azure where you will learn how to manage Azure resources for machine learning; run experiments and train models; deploy and operationalize machine learning solutions; and implement responsible machine learning.

You will also learn to use Azure Databricks to explore, prepare, and model data; and integrate Databricks machine learning processes with Azure Machine Learning. This certification is an opportunity to prove knowledge and expertise operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure.

By the end of this program, you will be ready to take the DP-100: Designing and Implementing a Data Science Solution on Azure.

At the end of this course, you’ll achieve your Designing and Implementing a Data Science Solution on Azure certification.

Through Firebrand’s Lecture | Lab | Review methodology you’ll certify at twice the speed of traditional training and get access to courseware, learn from certified instructors, and train in a distraction-free environment.

40% faster

Distraction-free environment

Audience

This course is ideal for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Här är 8 skäl varför du ska genomföra din hos Firebrand Training:

  1. Du blir utbildad och certifierad på bara 2 dagar. Hos oss får du din utbildning och certifiering på rekordtid, en certifering du också genomför här på plats som en integrerad del av den intensiva, accelererade utbildningen.
  2. Allt är inkluderat. Ett engångsbelopp täcker alla kursmaterial, examen, boende och mat och erbjuder det mest kostnadseffektiva sättet att erhålla din kurs och certifiering på. Och detta utan några oannonserade ytterligare kostnader.
  3. Du klarar certifieringen första gången eller kan gå om kursen kostnadsfritt. Det är vår garanti. Vi är säkra på att du kommer klara din certifiering första gången. Men skulle du mot förmodan inte göra det kan du inom ett år komma tillbaks, delta i hela kursen igen, och bara betala för eventuella övernattningar och din examen. Allt annat är gratis.
  4. Du lär dig mer.Traditionella utbildningsdagar pågår kl. 09.00-16.00 med långa lunch- och fikapauser. Hos Firebrand Training får du minst 12 timmars effektiv och fokuserad kvalitetsutbildning varje dag tillsammans med din instruktör, utan vare sig privata eller arbetsrelaterade störande moment.
  5. Du lär dig snabbare. Vi kombinerar de tre inlärningsmetoderna (Presentation|Övning|Diskussion) så att vi därigenom genomför kursen på ett sätt som säkerställer att du lär dig snabbare och lättare.
  6. Du är i säkra händer.Vi har utbildat och certifierat 134.561 personer, vi är auktoriserad partner med alla de stora namnen i branschen och har dessutom vunnit åtskilliga utmärkelser med bland annat ”Årets Learning Partner 2010, 2011, 2012, 2013 och 2015” från Microsoft Danmark och Gazelle priset 2013 - 1. plats för region Själland i Danmark med en tillväxt om 1.430% sedan 2009.
  7. Du lär dig inte bara teorin. Vi har vidareutvecklat kursen med fler praktiska övningar som ger dig det extra du behöver för att kunna lösa praktiska problemställningar och klara din certifiering.
  8. Du lär dig från de bästa. Våra instruktörer är de bästa i branschen och erbjuder en helt unik blandning av kunskap, praktisk erfarenhet och passion för att lära ut.

Curriculum

Designing and Implementing a Data Science Solution on Azure

Module 1: Introduction to Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

  • Getting Started with Azure Machine Learning
  • Azure Machine Learning Tools
  • Lab : Creating an Azure Machine Learning Workspace
  • Lab : Working with Azure Machine Learning Tools

After completing this module, you will be able to:

  • Provision an Azure Machine Learning workspace
  • Use tools and code to work with Azure Machine Learning
  • Module 2: No-Code Machine Learning with Designer

    This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume.

    • Training Models with Designer
    • Publishing Models with Designer
    • Lab : Creating a Training Pipeline with the Azure ML Designer
    • Lab : Deploying a Service with the Azure ML Designer

    After completing this module, you will be able to;

    • Use designer to train a machine learning model
    • Deploy a Designer pipeline as a service

    Module 3: Running Experiments and Training Models

    In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

    • Introduction to Experiments
    • Training and Registering Models
    • Lab : Running Experiments
    • Lab : Training and Registering Models

    After completing this module, you will be able to:

    • Run code-based experiments in an Azure Machine Learning workspace
    • Train and register machine learning models

    Module 4: Working with Data

    Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

    • Working with Datastores
    • Working with Datasets
    • Lab : Working with Datastores
    • Lab : Working with Datasets

    After completing this module, you will be able to:

    • Create and consume datastores
    • Create and consume datasets

    Module 5: Compute Contexts

    One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

    • Working with Environments
    • Working with Compute Targets
    • Lab : Working with Environments
    • Lab : Working with Compute Targets

    After completing this module, you will be able to:

    • Create and use environments
    • Create and use compute targets

    Module 6: Orchestrating Operations with Pipelines

    Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.

    • Introduction to Pipelines
    • Publishing and Running Pipelines
    • Lab : Creating a Pipeline
    • Lab : Publishing a Pipeline

    After completing this module, you will be able to:

    • Create pipelines to automate machine learning workflows
    • Publish and run pipeline services

    Module 7: Deploying and Consuming Models

    Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

    • Real-time Inferencing
    • Batch Inferencing
    • Lab : Creating a Real-time Inferencing Service
    • Lab : Creating a Batch Inferencing Service

    After completing this module, you will be able to:

    • Publish a model as a real-time inference service
    • Publish a model as a batch inference service

    Module 8: Training Optimal Models

    By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

    • Hyperparameter Tuning
    • Automated Machine Learning
    • Lab : Tuning Hyperparameters
    • Lab : Using Automated Machine Learning

    After completing this module, you will be able to:

    • Optimize hyperparameters for model training
    • Use automated machine learning to find the optimal model for your data

    Module 9: Interpreting Models

    Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behaviour. This module describes how you can interpret models to explain how feature importance determines their predictions.

    • Introduction to Model Interpretation using Model Explainers
    • Lab : Reviewing Automated Machine Learning Explanations
    • Lab : Interpreting Models

    After completing this module, you will be able to:

    • Generate model explanations with automated machine learning
    • Use explainers to interpret machine learning models

    Module 10: Monitoring Models

    After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

    • Monitoring Models with Application Insights
    • Monitoring Data Drift
    • Lab : Monitoring a Model with Application Insights
    • Lab : Monitoring Data Drift

    After completing this module, you will be able to:

    • Use Application Insights to monitor a published model
    • Monitor data drift

Exam Track

At the end of this accelerated course, you’ll sit the following exam at the Firebrand Training centre, covered by your Certification Guarantee:

Designing and Implementing a Data Science Solution on Azure

  • Exam code: DP-100: Designing and Implementing a Data Science Solution on Azure
  • Format: This exam measures your ability to accomplish the following technical tasks: manage Azure resources for machine learning; run experiments and train models; deploy and operationalize machine learning solutions; and implement responsible machine learning.
  • Passing score: 700
  • Domains: -
  • Manage Azure resources for machine learning (25—30%)
  • Run experiments and train models (20—25%)
  • Deploy and operationalize machine learning solutions (35—40%)
  • Implement responsible machine learning (5—10%)

What's Included

Prerequisites

Before attending this accelerated course, you should have subject matter expertise applying data science and machine learning to implement and run machine learning workloads on Microsoft Azure. You should also have knowledge and experience in data science and using Azure Machine Learning and Azure Databricks.

Before attending this course, you should have:

  • A fundamental knowledge of Microsoft Azure.
  • Experience of writing Python code to work with data, using libraries such as Numpy, Pandas, and Matplotlib.
  • Understanding of data science; including how to prepare data, and train machine learning models using common machine learning libraries such as Scikit-Learn, PyTorch, or Tensorflow.

Är du redo för din Firebrand kurs?

Vi intervjuar alla potentiella deltagare om deras bakgrund, utbildning, certifiering och personliga inställning. Om du kommer igenom denna process så har du riktigt goda möjligheter att klara din certifiering.

Firebrand Training erbjuder en ambitiös utbildningsmiljö som förutsätter att du verkligen dedikerar dig till kursen. Ovanstående förkunskaper är endast vägledande, många deltagare med mindre erfarenhet men med en annan bakgrund eller kunskap har framgångsrikt genomfört sin utbildning hos Firebrand Training.

Om du funderar på huruvida du uppfyller rekommenderade förkunskaper vänligen ring oss på (0)8 52 50 01 66 och prata med en av våra utbildningsrådgivare som kan hjälpa dig.

Kundreferenser

Vi har utbildat 134.561 kursdeltagare under 12 år. Vi har bett alla göra en utvärdering av vår accelererade utbildning. För närvarande har 96,51% sagt att Firebrand överträffat deras förväntningar:

"The instructor was very knowledgeable and helpful and look forward to the next course"
Duane Leslie Jones, Capita plc. (2/11/2022 (Onsdag) till 4/11/2022 (Fredag))

"You visit a very well-organised Training Centre with all modern amenities in almost the middle of nowhere! That will help you focus and ensure that you spend time needed to get stuff done and get prepared for your Certification. Added bonus, the folks working for Firebrand are awesome!"
Nikolaos Velissaris, Microsoft. (29/11/2022 (Tisdag) till 2/12/2022 (Fredag))

"Very detailed course with a extremely knowledgeable instructor."
Anonymous. (29/11/2022 (Tisdag) till 2/12/2022 (Fredag))

"Quite a lot but learned many new things!"
Anonymous. (29/11/2022 (Tisdag) till 2/12/2022 (Fredag))

"The instructor was great in explaining the the concepts. She used many real time examples throughout the course which made the topic interesting and easy to understand."
Tejas Patil, Capita plc. (2/11/2022 (Onsdag) till 4/11/2022 (Fredag))

Kursdatum

Startar

Slutar

Tillgänglighet

Plats

Registrera

21/11/2022 (Måndag)

22/11/2022 (Tisdag)

Avslutad - Lämna feedback

-

 

27/3/2023 (Måndag)

28/3/2023 (Tisdag)

Väntelista

Rikstäckande

 

8/5/2023 (Måndag)

9/5/2023 (Tisdag)

Begränsat antal platser

Rikstäckande

 

19/6/2023 (Måndag)

20/6/2023 (Tisdag)

Platser tillgängliga

Rikstäckande

 

31/7/2023 (Måndag)

1/8/2023 (Tisdag)

Platser tillgängliga

Rikstäckande

 

11/9/2023 (Måndag)

12/9/2023 (Tisdag)

Platser tillgängliga

Rikstäckande

 

Senaste recensioner från våra studenter