Amazon Web Services (AWS) - SageMaker Studio for Data Scientists

Varighed

Varighed:

Kun 2 dage

Metode

Metode:

Klasseværelse / Online / Hybrid

Næste dato

Næste dato:

10/2/2025 (Mandag)

Overview

On this accelerated Amazon SageMaker Studio for Data Scientists course, you will learn to boost productivity at every step of the ML lifecycle with Amazon SageMaker Studio for Data Scientists from an expert AWS instructor.

This 2 day, advanced level course helps experienced data scientists build, train, and deploy ML models for any use case with fully managed infrastructure, tools, and workflows to reduce training time from hours to minutes with optimized infrastructure. This course includes presentations, demonstrations, discussions, labs, and at the end of the course, you’ll practice building an end-to-end tabular data ML project using SageMaker Studio and the SageMaker Python SDK.

Accelerate the preparation, building, training, deployment, and monitoring of ML solutions by using Amazon SageMaker Studio Use the tools that are part of SageMaker Studio to improve productivity at every step of the ML lifecycle And much more

At the end of this course, you’ll achieve your Amazon SageMaker Studio for Data Scientists certification.

Through Firebrand’s Lecture | Lab | Review methodology, you’ll get certified at twice the speed of the traditional training and get access to courseware, learn from certified instructors, and train in a distraction-free environment.

Audience

This course is ideal for:

  • Experienced data scientists who are proficient in ML and deep learning fundamentals.
  • People with relevant experience includes using ML frameworks, Python programming, and the process of building, training, tuning, and deploying models.

Curriculum

Module 1: Amazon SageMaker Setup and Navigation

  • Launch SageMaker Studio from the AWS Service Catalog.
  • Navigate the SageMaker Studio UI.
  • Demo 1: SageMaker UI Walkthrough
  • Lab 1: Launch SageMaker Studio from AWS Service Catalog

 

Module 2: Data Processing Use Amazon SageMaker Studio to collect, clean, visualize, analyze, and transform data.

  • Set up a repeatable process for data processing.
  • Use SageMaker to validate that collected data is ML ready.
  • Detect bias in collected data and estimate baseline model accuracy.
  • Lab 2: Analyze and Prepare Data Using SageMaker Data Wrangler
  • Lab 3: Analyze and Prepare Data at Scale Using Amazon EMR
  • Lab 4: Data Processing Using SageMaker Processing and the SageMaker Python SDK
  • Lab 5: Feature Engineering Using SageMaker Feature Store

 

Module 3: Model Development Use Amazon SageMaker Studio to develop, tune, and evaluate an ML model against business objectives and fairness and explainability best practices.

  • Fine-tune ML models using automatic hyperparameter optimization capability.
  • Use SageMaker Debugger to surface issues during model development.
  • Demo 2: Autopilot Lab 6: Track Iterations of Training and Tuning Models Using SageMaker Experiments
  • Lab 7: Analyze, Detect, and Set Alerts Using SageMaker Debugger
  • Lab 8: Identify Bias Using SageMaker Clarify

 

Module 4: Deployment and Inference Use Model Registry to create a model group; register, view, and manage model versions; modify model approval status; and deploy a model.

  • Design and implement a deployment solution that meets inference use case requirements.
  • Create, automate, and manage end-to-end ML workflows using Amazon SageMaker Pipelines.
  • Lab 9: Inferencing with SageMaker Studio
  • Lab 10: Using SageMaker Pipelines and the SageMaker Model Registry with SageMaker Studio

 

Module 5: Monitoring Configure a SageMaker Model Monitor solution to detect issues and initiate alerts for changes in data quality, model quality, bias drift, and feature attribution (explainability) drift.

  • Create a monitoring schedule with a predefined interval.
  • Demo 3: Model Monitoring

 

Module 6: Managing SageMaker Studio Resources and Updates List resources that accrue charges.

  • Recall when to shut down instances.
  • Explain how to shut down instances, notebooks, terminals, and kernels.
  • Understand the process to update SageMaker Studio.
  • Capstone:

The Capstone lab will bring together the various capabilities of SageMaker Studio discussed in this course. Students will be given the opportunity to prepare, build, train, and deploy a model using a tabular dataset not seen in earlier labs. Students can choose among basic, intermediate, and advanced versions of the instructions. Capstone Lab: Build an End-to-End Tabular Data ML Project Using SageMaker Studio and the SageMaker Python SDK.

Exam Track

At the end of this accelerated course, you’ll achieve your Amazon SageMaker Studio for Data Scientists.

What's Included

Det hele er inkluderet! Du får en alt-inklusiv kursuspakke, som er målrettet til dine behov. Vi tager os af enhver detalje, så det eneste du skal fokusere på er dine lærings- og certificeringsmål.

  • Transport til/fra specifikke afhentningssteder
  • Overnatninger, samtlige måltider samt adgang til forfriskninger, snacks, kaffe og the.
  • Intensiv Hands-on uddannelse med vores unikke (Lecture | Lab | Review)TM metode
  • Omfattende kursusmaterialer og labmanualer
  • Et helt igennem instruktørstyret program
  • 24 timers adgang til både undervisningslokale og instruktøren
  • Samtlige måltider samt adgang til forfriskninger, snacks, kaffe og the.
  • Certificeringsgaranti

Prerequisites

Before attending this accelerated course, you should have:

  • Completed the following AWS course prior to attending this course: AWS Technical Essentials (AWSE)
  • Students who are not experienced data scientists complete the following two courses followed by 1-year on-the-job experience building models prior to taking this course: Machine Learning Pipeline on AWS (ML-PIPE) Deep Learning on AWS (AWSDL).

Er du klar til dit Firebrand Kursus?

Vi interviewer alle potentielle deltagere angående deres baggrund, uddannelser, certificeringer og personlig indstilling. Hvis du kommer igennem denne screeningsprocedure, betyder det, at du har rigtig gode chancer for at bestå.

Firebrand Training tilbyder et ambitiøst uddannelsesmiljø, som forudsætter at du dedikerer dig til kurset. Ovenstående forkundskaber er vejledende; mange deltagere med mindre erfaring, men med en anden baggrund eller færdigheder, har haft succes med accelereret uddannelse hos Firebrand Training.

Hvis du funderer på hvorvidt du opfylder de anbefalede forkundskaber, er du meget velkommen til at ringe til os på 89 88 66 05 og tale med en af vores uddannelsesrådgivere, som kan hjælpe dig.

Kundereferencer

Her er Firebrand Training review afsnit. Siden 2001 har vi trænet præcist 134.561 studerende og professionelle og bedt dem alle om at gennemgå vores Accelerated Learning. Lige nu har 95,45% sagt, at Firebrand har overgået deres forventninger.

Læs anmeldelser fra de seneste accelererede kurser nedenfor, eller besøg Firebrand Stories for skriftlige og videointerviews med vores alumner.


"The trainer was absolutely fantastic. The course materials was explained to point and easily understood. All questions answered I had. I am feeling extremely confident of passing the exam and being certified."
Peter Royle, Lineage Logistics. (29/4/2024 (Mandag) til 2/5/2024 (Torsdag))

"It was a great week worth of training. Very intense course so not for the faint of heart! If you do decide to do a course here, be prepared but be excited. It''s a great place to learn these courses and appreciate my instructor and everyone for making it a great experience!"
Robert Sizeland, Rhino Analytics. (29/4/2024 (Mandag) til 2/5/2024 (Torsdag))

"Good trainer. Course has a lot of content but trainer did well to make it entertaining."
Uchenna Onyia. (8/3/2024 (Fredag) til 10/3/2024 (Søndag))

"Intensive course with good content"
Karen Asamoah, BPP. (4/3/2024 (Mandag) til 10/3/2024 (Søndag))

"Very in-depth knowledge of the trainer made the course enjoyable"
A.K.. (4/3/2024 (Mandag) til 7/3/2024 (Torsdag))

Kursusdatoer

Starter

Slutter

Tilgængelighed

Sted

Tilmelding

26/8/2024 (Mandag)

27/8/2024 (Tirsdag)

Afsluttet - Giv feedback

-

 

 

10/2/2025 (Mandag)

11/2/2025 (Tirsdag)

Begrænsede pladser

Landsdækkende

 

24/3/2025 (Mandag)

25/3/2025 (Tirsdag)

Tilgængelige pladser

Landsdækkende

 

5/5/2025 (Mandag)

6/5/2025 (Tirsdag)

Tilgængelige pladser

Landsdækkende

 

16/6/2025 (Mandag)

17/6/2025 (Tirsdag)

Tilgængelige pladser

Landsdækkende

 

Seneste anmeldelser fra vores studerende