Amazon Web Services (AWS) - SageMaker Studio for Data Scientists

Duration

Duration:

Just 2 Days

Method

Method:

Classroom / Online / Hybrid

Next date

Next date:

30/9/2024 (Monday)

Overview

On this accelerated Amazon SageMaker Studio for Data Scientists course, you will learn to boost productivity at every step of the ML lifecycle with Amazon SageMaker Studio for Data Scientists from an expert AWS instructor.

This 2 day, advanced level course helps experienced data scientists build, train, and deploy ML models for any use case with fully managed infrastructure, tools, and workflows to reduce training time from hours to minutes with optimized infrastructure. This course includes presentations, demonstrations, discussions, labs, and at the end of the course, you’ll practice building an end-to-end tabular data ML project using SageMaker Studio and the SageMaker Python SDK.

Accelerate the preparation, building, training, deployment, and monitoring of ML solutions by using Amazon SageMaker Studio Use the tools that are part of SageMaker Studio to improve productivity at every step of the ML lifecycle And much more

At the end of this course, you’ll achieve your Amazon SageMaker Studio for Data Scientists certification.

Through Firebrand’s Lecture | Lab | Review methodology, you’ll get certified at twice the speed of the traditional training and get access to courseware, learn from certified instructors, and train in a distraction-free environment.

Audience

This course is ideal for:

  • Experienced data scientists who are proficient in ML and deep learning fundamentals.
  • People with relevant experience includes using ML frameworks, Python programming, and the process of building, training, tuning, and deploying models.

Four reasons why you should sit your course with Firebrand Training

  1. You'll be trained and certified faster. Learn more on this 2-day accelerated course. You'll get at least 12 hours a day of quality learning time in a distraction-free environment
  2. Your course is all-inclusive. One simple price covers all course materials, exams, accommodation and meals – so you can focus on learning
  3. Pass first time or train again for free. Your expert instructor will deliver our unique accelerated learning methods, allowing you to learn faster and be in the best possible position to pass first time. In the unlikely event that you don't, it's covered by your Certification Guarantee
  4. Study with an award-winning training provider. We've won the Learning and Performance Institute's "Training Company of the Year" three times. Firebrand is your fastest way to learn, with 134.561 students saving more than one million hours since 2001

Curriculum

Module 1: Amazon SageMaker Setup and Navigation

  • Launch SageMaker Studio from the AWS Service Catalog.
  • Navigate the SageMaker Studio UI.
  • Demo 1: SageMaker UI Walkthrough
  • Lab 1: Launch SageMaker Studio from AWS Service Catalog

 

Module 2: Data Processing Use Amazon SageMaker Studio to collect, clean, visualize, analyze, and transform data.

  • Set up a repeatable process for data processing.
  • Use SageMaker to validate that collected data is ML ready.
  • Detect bias in collected data and estimate baseline model accuracy.
  • Lab 2: Analyze and Prepare Data Using SageMaker Data Wrangler
  • Lab 3: Analyze and Prepare Data at Scale Using Amazon EMR
  • Lab 4: Data Processing Using SageMaker Processing and the SageMaker Python SDK
  • Lab 5: Feature Engineering Using SageMaker Feature Store

 

Module 3: Model Development Use Amazon SageMaker Studio to develop, tune, and evaluate an ML model against business objectives and fairness and explainability best practices.

  • Fine-tune ML models using automatic hyperparameter optimization capability.
  • Use SageMaker Debugger to surface issues during model development.
  • Demo 2: Autopilot Lab 6: Track Iterations of Training and Tuning Models Using SageMaker Experiments
  • Lab 7: Analyze, Detect, and Set Alerts Using SageMaker Debugger
  • Lab 8: Identify Bias Using SageMaker Clarify

 

Module 4: Deployment and Inference Use Model Registry to create a model group; register, view, and manage model versions; modify model approval status; and deploy a model.

  • Design and implement a deployment solution that meets inference use case requirements.
  • Create, automate, and manage end-to-end ML workflows using Amazon SageMaker Pipelines.
  • Lab 9: Inferencing with SageMaker Studio
  • Lab 10: Using SageMaker Pipelines and the SageMaker Model Registry with SageMaker Studio

 

Module 5: Monitoring Configure a SageMaker Model Monitor solution to detect issues and initiate alerts for changes in data quality, model quality, bias drift, and feature attribution (explainability) drift.

  • Create a monitoring schedule with a predefined interval.
  • Demo 3: Model Monitoring

 

Module 6: Managing SageMaker Studio Resources and Updates List resources that accrue charges.

  • Recall when to shut down instances.
  • Explain how to shut down instances, notebooks, terminals, and kernels.
  • Understand the process to update SageMaker Studio.
  • Capstone:

The Capstone lab will bring together the various capabilities of SageMaker Studio discussed in this course. Students will be given the opportunity to prepare, build, train, and deploy a model using a tabular dataset not seen in earlier labs. Students can choose among basic, intermediate, and advanced versions of the instructions. Capstone Lab: Build an End-to-End Tabular Data ML Project Using SageMaker Studio and the SageMaker Python SDK.

Exam Track

At the end of this accelerated course, you’ll achieve your Amazon SageMaker Studio for Data Scientists.

What's Included

Your accelerated course includes:

  • Accommodation *
  • Meals, unlimited snacks, beverages, tea and coffee *
  • On-site exams **
  • Exam vouchers **
  • Practice tests **
  • Certification Guarantee ***
  • Courseware
  • Up-to 12 hours of instructor-led training each day
  • 24-hour lab access
  • Digital courseware **
  • * For residential training only. Accommodation is included from the night before the course starts. This doesn't apply for online courses.
  • ** Some exceptions apply. Please refer to the Exam Track or speak with our experts
  • *** Pass first time or train again free as many times as it takes, unlimited for 1 year. Just pay for accommodation, exams, and incidental costs.

Prerequisites

Before attending this accelerated course, you should have:

  • Completed the following AWS course prior to attending this course: AWS Technical Essentials (AWSE)
  • Students who are not experienced data scientists complete the following two courses followed by 1-year on-the-job experience building models prior to taking this course: Machine Learning Pipeline on AWS (ML-PIPE) Deep Learning on AWS (AWSDL).

Are you ready to get certified in record time?

We interview all applicants for the course on their technical background, degrees and certifications held, and general suitability. If you get through this screening process, it means you stand a great chance of passing.

Firebrand Training is an immersive training environment. You must be committed to the course. The above prerequisites are guidelines, but many students with less experience have other background or traits that have enabled their success in accelerated training through Firebrand Training.

If you have any doubts as to whether you meet the pre-requisites please call 89 88 66 05 and speak to one of our enrolment consultants, who can help you with a training plan.

Reviews

We've currently trained 134.561 students in 12 years. We asked them all to review our Accelerated Learning. Currently,
95,54% have said Firebrand exceeded their expectations:

"The trainer was absolutely fantastic. The course materials was explained to point and easily understood. All questions answered I had. I am feeling extremely confident of passing the exam and being certified."
Peter Royle, Lineage Logistics. (29/4/2024 (Monday) to 2/5/2024 (Thursday))

"It was a great week worth of training. Very intense course so not for the faint of heart! If you do decide to do a course here, be prepared but be excited. It's a great place to learn these courses and appreciate my instructor and everyone for making it a great experience!"
Robert Sizeland, Rhino Analytics. (29/4/2024 (Monday) to 2/5/2024 (Thursday))

"Good trainer. Course has a lot of content but trainer did well to make it entertaining."
Uchenna Onyia. (8/3/2024 (Friday) to 10/3/2024 (Sunday))

"Intensive course with good content"
Karen Asamoah, BPP. (4/3/2024 (Monday) to 10/3/2024 (Sunday))

"Very in-depth knowledge of the trainer made the course enjoyable"
A.K.. (4/3/2024 (Monday) to 7/3/2024 (Thursday))

Course Dates

Start

Finish

Status

Location

Book now

27/5/2024 (Monday)

28/5/2024 (Tuesday)

Finished - Leave feedback

-

 

30/9/2024 (Monday)

1/10/2024 (Tuesday)

Wait list

Nationwide

 

11/11/2024 (Monday)

12/11/2024 (Tuesday)

Limited availability

Nationwide

 

 

3/2/2025 (Monday)

4/2/2025 (Tuesday)

Open

Nationwide

 

17/3/2025 (Monday)

18/3/2025 (Tuesday)

Open

Nationwide

 

Latest Reviews from our students