IBM - Data Analytics with Excel and R Professional Certificate

Dauer

Dauer:

Nur 7 Tage

Methode

Methode:

Klassenraum / Online / Hybrid

nächster Termin

nächster Termin:

10.2.2025 (Montag)

Overview

This accelerated IBM: IBM Data Analytics with Excel and R Professional Certification, will prepare you for a career in data analytics. The topics covered within this certification enable you to:

  • Master the most up-to-date practical skills and knowledge data analysts use in their daily roles
  • Learn how to perform data analysis, including data preparation, statistical analysis, and predictive modeling using R, R Studio, and Jupyter
  • Utilize Excel spreadsheets to perform a variety of data analysis tasks like data wrangling, using pivot tables, data mining, & creating charts
  • Communicate your data findings using various data visualization techniques including, charts, plots & interactive dashboards with Cognos and R Shiny

This course will teach you the foundational data skills employers are seeking for entry level data analytics roles and will provide a portfolio of projects and a Professional Certificate from IBM to showcase your expertise to potential employers.

You’ll learn the latest skills and tools used by professional data analysts and upon successful completion of this program, you will be able to work with Excel spreadsheets, Jupyter Notebooks, and R Studio to analyze data and create visualizations. You will also use the R programming language to complete the entire data analysis process, including data preparation, statistical analysis, data visualization, predictive modeling and creating interactive dashboards. Lastly, you’ll learn how to communicate your data findings and prepare a summary report.

In just 7 days, you’ll also learn how to:

  • Describe the data ecosystem, tasks a Data Analyst performs, as well as skills and tools required to become a successful Data Analyst
  • Explain basic functionality of spreadsheets, and utilize Excel to perform a variety of data analysis tasks like data wrangling, using pivot tables, and data mining
  • Create various types of visualizations including charts, and dashboards using Excel and Cognos Analytics.
  • Perform basic R programming tasks such as using common data structures, data manipulation, using APIs, webscraping, and working with R Studio and Jupyter.
  • Create relational databases and query the data using SQL and R from JupyterLab
  • Complete the data analysis process, including data preparation, statistical analysis, and predictive modeling.
  • Communicate data findings using data visualization charts, plots, and dashboards using libraries such as ggplot, leaflet and R Shiny.

At the end of this course, you’ll sit the IBM exam, and achieve your IBM Data Analytics with Excel and R Professional Certification. Through Firebrand’s Lecture | Lab | Review methodology, you’ll get certified at twice the speed of the traditional training and get access to courseware, learn from certified instructors, and train in a distraction-free environment.

 

Audience

This course is ideal for:

  • Entry level roles in Data Analytics or Data Science.

Benefits

In einem Firebrand Intensiv-Training profitieren Sie von folgenden Vorteilen:

  • Zwei Optionen - Präsenz- oder Onlinetraining
  • Ablenkungsfreie Lernumgebung
  • Eigene Trainings- und Prüfungszentren (Pearson VUE Select Partner)
  • Effektives Training mit praktischen Übungseinheiten und intensiver Betreuung durch unsere Trainer
  • Umfassendes Leistungspaket mit allem, was Sie benötigen, um Ihre Zertifizierung zu erhalten, inklusive unserer Firebrand Leistungsgarantie.

Curriculum

Module 1: Introduction to Data Analytics

  • Explain what Data Analytics is and the key steps in the Data Analytics process
  • Differentiate between different data roles such as Data Engineer, Data Analyst, Data Scientist, Business Analyst, and Business Intelligence Analyst
  • Describe the different types of data structures, file formats, and sources of data
  • Describe the data analysis process involving collecting, wrangling, mining, and visualizing data

Module 2: Excel Basics for Data Analysis

  • Display working knowledge of Excel for Data Analysis.
  • Perform basic spreadsheet tasks including navigation, data entry, and using formulas.
  • Employ data quality techniques to import and clean data in Excel.
  • Analyze data in spreadsheets by using filter, sort, look-up functions, as well as pivot tables.

 

Module 3: Data Visualization and Dashboards with Excel and Cognos

  • Create basic visualizations such as line graphs, bar graphs, and pie charts using Excel spreadsheets.
  • Explain the important role charts play in telling a data-driven story.
  • Construct advanced charts and visualizations such as Treemaps, Sparklines, Histogram, Scatter Plots, and Filled Map Charts.
  • Build and share interactive dashboards using Excel and Cognos Analytics.

 

Module 4: Assessment for Data Analysis and Visualization Foundations

  • Demonstrate readiness for performing foundational data analysis and data visualization tasks and key steps in the Data Analytics process.
  • Differentiate between the roles different data professionals play in a modern data ecosystem.
  • Perform basic Excel tasks for Data Analysis including data quality and data preparation skills.
  • Exhibit abilities in visualizing data using Excel and proficiency in creating dashboards using Excel and Cognos Analytics.

 

 

Module 5: Introduction to R Programming for Data Science

  • Manipulate primitive data types in the R programming language using RStudio or Jupyter Notebooks.
  • Control program flow with conditions and loops, write functions, perform character string operations, write regular expressions, handle errors.
  • Construct and manipulate R data structures, including vectors, factors, lists, and data frames.
  • Read, write, and save data files and scrape web pages using R.

 

Module 6: SQL for Data Science with R

  • Create and access a database instance on the cloud
  • Compose and execute basic SQL statements - SELECT, INSERT, UPDATE, DELETE, CREATE, DROP
  • Construct SQL statements to filter, sort, group results, use built-in functions, compose nested queries, access multiple tables
  • Analyze data from Jupyter using R and SQL by combining SQL and R skills to query real-world datasets

 

Module 7: Data Analysis with R

  • Prepare data for analysis by handling missing values, formatting and normalizing data, binning, and turning categorical values into numeric values.
  • Compare and contrast predictive models using simple linear, multiple linear, and polynomial regression methods.
  • Examine data using descriptive statistics, data grouping, analysis of variance (ANOVA), and correlation statistics.
  • Evaluate a model for overfitting and underfitting conditions and tune its performance using regularization and grid search.

 

Module 8: Data Visualization with R

  • Create bar charts, histograms, pie charts, scatter plots, line graphs, box plots, and maps using R and related packages.
  • Design customized charts and plots using annotations, axis titles, text labels, themes, and faceting.
  • Create maps using the Leaflet package for R.
  • Create interactive dashboards using the Shiny package for R.

 

Module 9: Data Science with R - Capstone Project

  • Write a web scraping program to extract data from an HTML file using HTTP requests and convert the data to a data frame.
  • Prepare data for modelling by handling missing values, formatting and normalizing data, binning, and turning categorical values into numeric values.
  • Interpret datawithexploratory data analysis techniques by calculating descriptive statistics, graphing data, and generating correlation statistics.
  • Build a Shiny app containing a Leaflet map and an interactive dashboard then create a presentation on the project to share with your peers.

Exam Track

At the end of this accelerated course, you’ll sit the following exam at the Firebrand Training centre, covered Certification Guarantee:

IBM: IBM Data Analytics with Excel and R Professional Certification Exam

You will complete hands-on labs to build your portfolio and gain practical experience with Excel, Cognos Analytics, SQL, and the R programing language and related libraries for data science, including Tidyverse, Tidymodels, R Shiny, ggplot2, Leaflet, and rvest.

Projects include:

  • Analyzing fleet vehicle inventory data using pivot tables.
  • Using key performance indicator (KPI) data from car sales to create an interactive dashboard.
  • Identifying patterns in countries’ COVID-19 testing data rates using R.
  • Using SQL with the RODBC R package to analyze foreign grain markets.
  • Creating linear and polynomial regression models and comparing them with weather station data to predict precipitation.
  • Using the R Shiny package to create a dashboard that examines trends in census data.
  • Using hypothesis testing and predictive modeling skills to build an interactive dashboard with the R Shiny package and a dynamic Leaflet map widget to investigate how weather affects bike-sharing demand.
  • Submitting this idea will trigger a series of actions for various teams. The product team will review the initial idea and progress it through the life cycle

What's Included

Prerequisites

Before attending this accelerated course, you should have:

  • No prior experience required, but statistical or programming knowledge is necessary.

Sind Sie sich unsicher, ob Sie die Voraussetzungen erfüllen? Wir besprechen gerne mit Ihnen Ihren technischen Hintergrund, Erfahrung und Qualifikation, um herauszufinden, ob dieser Intensivkurs der richtige für Sie ist.

Erfahrungsberichte

Bereits 134561 Kursteilnehmer haben seit 2001 erfolgreich einen Firebrand-Kurs absolviert. Unsere aktuellen Kundenbefragungen ergeben: Bei 94.76% unserer Teilnehmer wurde die Erwartungshaltung durch Firebrand übertroffen!


"Alles super!"
Damian Rosamilia. (13.5.2024 (Montag) bis 17.5.2024 (Freitag))

"Veel lesstof in een korte tijd. "
MB. (13.5.2024 (Montag) bis 17.5.2024 (Freitag))

"Very positive and enriching experience professional and very well prepared."
Paolo Gallo. (8.4.2024 (Montag) bis 12.4.2024 (Freitag))

"Very positive and enriching experience professional and very well prepared."
Paolo Gallo. (8.4.2024 (Montag) bis 12.4.2024 (Freitag))

"Erst durch die professionellen Erklärungen des Trainers klärten sich die Konzepte und Zusammenhänge der massiven Menge von Informationen des CISM Kursmaterials. Der Trainer ist sehr erfahren und bringt sowohl den Stoff, als auch den "Geist" des CISM Kurses sehr verständlich rüber."
B.S., Helios Kliniken GmbH. (8.4.2024 (Montag) bis 11.4.2024 (Donnerstag))

Kurstermine

Start

Ende

Verfügbarkeit

Standort

Anmelden

26.8.2024 (Montag)

1.9.2024 (Sonntag)

Kurs gelaufen - Hinterlasse Kommentar

-

 

 

10.2.2025 (Montag)

16.2.2025 (Sonntag)

Einige Plätze frei

Überregional

 

24.3.2025 (Montag)

30.3.2025 (Sonntag)

Einige Plätze frei

Überregional

 

5.5.2025 (Montag)

11.5.2025 (Sonntag)

Einige Plätze frei

Überregional

 

16.6.2025 (Montag)

22.6.2025 (Sonntag)

Einige Plätze frei

Überregional

 

Neueste Rezensionen von unseren Kursteilnehmern