Cloudera - CCA Data Analyst

Dauer

Dauer:

Nur 3 Tage

Methode

Methode:

Klassenraum / Online / Hybrid

nächster Termin

nächster Termin:

27.9.2021 (Montag)

Overview

On this accelerated 2-day Cloudera CCA Data Analyst course, you'll get the skills you need to apply traditional data analytics and business intelligence skills to big data.

Your expert instructor will introduce you to the tools and techniques you need to access, manipulate, transform, and analyse complex data sets using SQL and familiar scripting languages.

You'll learn topics such as:

  • The features that Pig, Hive, and Impala offer for data acquisition, storage, and analysis
  • The fundamentals of Apache Hadoop and data ETL (extract, transform, load), ingestion, and processing with Hadoop
  • How Pig, Hive, and Impala improve productivity for typical analysis tasks
  • Joining diverse datasets to gain valuable business insight
  • Performing real-time, complex queries on datasets

Access to 24/7 labs means that you can test your hands-on skills in navigating the Hadoop ecosystem whenever you like. Through our unique Lecture | Lab | Review technique, you'll gain Apache Hadoop skills faster.

On this course, you'll prepare for and sit the CCA Data Analyst exam, covered by your Certification Gurantee.

If you're a data analyst, business intelligence specialist, developer, system architect or database administrator, this course is ideal for you.

Benefits

In einem Firebrand Intensiv-Training profitieren Sie von folgenden Vorteilen:

  • Zwei Optionen - Präsenz- oder Onlinetraining
  • Ablenkungsfreie Lernumgebung
  • Eigene Trainings- und Prüfungszentren (Pearson VUE Select Partner)
  • Effektives Training mit praktischen Übungseinheiten und intensiver Betreuung durch unsere Trainer
  • Umfassendes Leistungspaket mit allem, was Sie benötigen, um Ihre Zertifizierung zu erhalten, inklusive unserer Firebrand Leistungsgarantie.

Curriculum

Introduction Apache Hadoop Fundamentals

  • The Motivation for Hadoop
  • Hadoop Overview
  • Data Storage: HDFS
  • Distributed Data Processing: YARN, MapReduce, and Spark
  • Data Processing and Analysis: Pig, Hive, and Impala
  • Database Integration: Sqoop
  • Other Hadoop Data Tools
  • Exercise Scenarios

Introduction to Apache Pig

  • What is Pig?
  • Pig's Features
  • Pig Use Cases
  • Interacting with Pig

Basic Data Analysis with Apache Pig

  • Pig Latin Syntax
  • Loading Data
  • Simple Data Types
  • Field Definitions
  • Data Output
  • Viewing the Schema
  • Filtering and Sorting Data
  • Commonly Used Functions

Processing Complex Data with Apache Pig

  • Storage Formats
  • Complex/Nested Data Types
  • Grouping
  • Built-In Functions for Complex Data
  • Iterating Grouped Data

Multi-Dataset Operations with Apache Pig

  • Techniques for Combining Datasets
  • Joining Datasets in Pig
  • Set Operations
  • Splitting Datasets

Apache Pig Troubleshooting and Optimisation

  • Troubleshooting Pig
  • Logging
  • Using Hadoop's Web UI
  • Data Sampling and Debugging
  • Performance Overview
  • Understanding the Execution Plan
  • Tips for Improving the Performance of Pig Jobs

Introduction to Apache Hive and Impala

  • What is Hive?
  • What is Impala?
  • Why Use Hive and Impala?
  • Schema and Data Storage
  • Comparing Hive and Impala to Traditional Databases
  • Use Cases

Querying with Apache Hive and Impala

  • Databases and Tables
  • Basic Hive and Impala Query Language Syntax
  • Data Types
  • Using Hue to Execute Queries
  • Using Beeline (Hive's Shell)
  • Using the Impala Shell

Apache Hive and Impala Data Management

  • Data Storage
  • Creating Databases and Tables
  • Loading Data
  • Altering Databases and Tables
  • Simplifying Queries with Views
  • Storing Query Results

Data Storage and Performance

  • Partitioning Tables
  • Loading Data into Partitioned Tables
  • When to Use Partitioning
  • Choosing a File Format
  • Using Avro and Parquet File Formats

Relational Data Analysis with Apache Hive and Impala

  • Joining Datasets
  • Common Built-In Functions
  • Aggregation and Windowing

Complex Data with Apache Hive and Impala

  • Complex Data with Hive
  • Complex Data with Impala

Analysing Text with Apache Hive and Impala

  • Using Regular Expressions with
  • Hive and Impala
  • Processing Text Data with SerDes in Hive
  • Sentiment Analysis and n-grams in Hive

Apache Hive Optimisation

  • Understanding Query Performance
  • Bucketing
  • Indexing Data
  • Hive on Spark

Apache Impala Optimisation

  • How Impala Executes Queries
  • Improving Impala Performance

Extending Apache Hive and Impala

  • Custom SerDes and File Formats in Hive
  • Data Transformation with
    • Custom Scripts in Hive
    • User-Defined Functions
    • Parameterised Queries

Choosing the Best Tool for the Job

  • Comparing Pig, Hive, Impala, and Relational Databases

Exam Track

On this course, you'll prepare for and take the following exam at the Firebrand Training centre, covered by your Certification Guarantee.

CCA Data Analyst Exam (CCA159)

  • Number of questions: 8-12
  • Format: performance-based
  • Duration: 120 minutes
  • Passing Score: 70%

What's Included

On this course, you'll receive:

  • Official Cloudera Data Analyst courseware

Prerequisites

Before attending this course, you should have knowledge of:

  • SQL
  • Linux command line
  • At least one scripting language (e.g., Bash scripting, Perl, Python, Ruby).

You don't need to have experience in Apache Hadoop.

Sind Sie sich unsicher, ob Sie die Voraussetzungen erfüllen? Wir besprechen gerne mit Ihnen Ihren technischen Hintergrund, Erfahrung und Qualifikation, um herauszufinden, ob dieser Intensivkurs der richtige für Sie ist.

Erfahrungsberichte

Bereits 105152 Kursteilnehmer haben seit 2001 erfolgreich einen Firebrand-Kurs absolviert. Unsere aktuellen Kundenbefragungen ergeben: Bei 96.66% unserer Teilnehmer wurde die Erwartungshaltung durch Firebrand übertroffen!


"Der Lehrgang war straff aber gut organisiert. Es ist nichts für nebenbei! Wer sich auf den Intensivkurs einlässt, bekommt in kurzer Zeit sehr viel Wissen vermittelt. Die Unterlagen waren gut strukturiert auch wenn sie manchmal nicht mehr aktuell waren. Das bereitgestellte Material war sehr hilfreich für die Prüfung. Das hybride Format mit Online und Vor-Ort hat gut funktioniert."
Gregor Bösenberg, adesso SE. (14.4.2021 (Mittwoch) bis 16.4.2021 (Freitag))

"Erfahrener Trainer, der einem die Themen praxisnah erklären kann."
A.G. . (3.3.2021 (Mittwoch) bis 5.3.2021 (Freitag))

"A thorough course covering aspects of security in software SDLC, a more focused view than the wider CISSP course and a good follow on course for software professionals after CISSP. "
Matthew Saint-Gregory, Software. (22.2.2021 (Montag) bis 28.2.2021 (Sonntag))

"Sehr guter Online Instructor Led Kurs, sehr professionell bezüglich der Präsentationstechnik. Der Tutor war sehr erfahren, ein sehr gutes, für nicht native english speaker, verständliches englisch. Der Tutor war für alle Rückfragen offen und nahm sich auch nach der Veranstaltung noch Zeit. "
Kai Widua, Beiersdorf. (9.2.2021 (Dienstag) bis 12.2.2021 (Freitag))

"Informativer Online Instructor Led Kurs mit gutem Mix aus Theorie und Übungen."
N.N.. (21.12.2020 (Montag) bis 22.12.2020 (Dienstag))

Kurstermine

Start

Ende

Verfügbarkeit

Standort

Anmelden

24.5.2021 (Montag)

26.5.2021 (Mittwoch)

Kurs gelaufen - Hinterlasse Kommentar

-

 

27.9.2021 (Montag)

29.9.2021 (Mittwoch)

Warteliste

Überregional

 

8.11.2021 (Montag)

10.11.2021 (Mittwoch)

Einige Plätze frei

Überregional

 

20.12.2021 (Montag)

22.12.2021 (Mittwoch)

Einige Plätze frei

Überregional

 

31.1.2022 (Montag)

2.2.2022 (Mittwoch)

Einige Plätze frei

Überregional

 

14.3.2022 (Montag)

16.3.2022 (Mittwoch)

Einige Plätze frei

Überregional

 

Neueste Rezensionen von unseren Kursteilnehmern