Looking for Global training? Go to https://firebrand.training/en or stay on the current site (Oesterreich)
On this accelerated Amazon SageMaker Studio for Data Scientists course, you will learn to boost productivity at every step of the ML lifecycle with Amazon SageMaker Studio for Data Scientists from an expert AWS instructor.
This 2 day, advanced level course helps experienced data scientists build, train, and deploy ML models for any use case with fully managed infrastructure, tools, and workflows to reduce training time from hours to minutes with optimized infrastructure. This course includes presentations, demonstrations, discussions, labs, and at the end of the course, you’ll practice building an end-to-end tabular data ML project using SageMaker Studio and the SageMaker Python SDK.
Accelerate the preparation, building, training, deployment, and monitoring of ML solutions by using Amazon SageMaker Studio Use the tools that are part of SageMaker Studio to improve productivity at every step of the ML lifecycle And much more
At the end of this course, you’ll achieve your Amazon SageMaker Studio for Data Scientists certification.
Through Firebrand’s Lecture | Lab | Review methodology, you’ll get certified at twice the speed of the traditional training and get access to courseware, learn from certified instructors, and train in a distraction-free environment.
This course is ideal for:
Module 1: Amazon SageMaker Setup and Navigation
Module 2: Data Processing Use Amazon SageMaker Studio to collect, clean, visualize, analyze, and transform data.
Module 3: Model Development Use Amazon SageMaker Studio to develop, tune, and evaluate an ML model against business objectives and fairness and explainability best practices.
Module 4: Deployment and Inference Use Model Registry to create a model group; register, view, and manage model versions; modify model approval status; and deploy a model.
Module 5: Monitoring Configure a SageMaker Model Monitor solution to detect issues and initiate alerts for changes in data quality, model quality, bias drift, and feature attribution (explainability) drift.
Module 6: Managing SageMaker Studio Resources and Updates List resources that accrue charges.
The Capstone lab will bring together the various capabilities of SageMaker Studio discussed in this course. Students will be given the opportunity to prepare, build, train, and deploy a model using a tabular dataset not seen in earlier labs. Students can choose among basic, intermediate, and advanced versions of the instructions. Capstone Lab: Build an End-to-End Tabular Data ML Project Using SageMaker Studio and the SageMaker Python SDK.
At the end of this accelerated course, you’ll achieve your Amazon SageMaker Studio for Data Scientists.
Before attending this accelerated course, you should have:
Sind Sie sich unsicher, ob Sie die Voraussetzungen erfüllen? Wir besprechen gerne mit Ihnen Ihren technischen Hintergrund, Erfahrung und Qualifikation, um herauszufinden, ob dieser Intensivkurs der richtige für Sie ist.
Bereits 134561 Kursteilnehmer haben seit 2001 erfolgreich einen Firebrand-Kurs absolviert. Unsere aktuellen Kundenbefragungen ergeben: Bei 95.43% unserer Teilnehmer wurde die Erwartungshaltung durch Firebrand übertroffen!
"Firebrand schafft eine optimale Umgebung, um schnell, viel zu lernen!"
M.P.. (4.12.2023 (Montag) bis 10.12.2023 (Sonntag))
"The Instructor hat a deep knowledge, patient and made the training fun."
E.A.. (4.12.2023 (Montag) bis 10.12.2023 (Sonntag))
"Think twice, dont do it."
Anonym (18.11.2019 (Montag) bis 24.11.2019 (Sonntag))
"If you have the brain, but not the time, Firebrand is the best for you."
Anonym (26.8.2019 (Montag) bis 29.8.2019 (Donnerstag))
"Excellent quality instruction; super intensive pace that will take you back 20 years to University exam cramming.
"
Anonym (20.5.2019 (Montag) bis 23.5.2019 (Donnerstag))
Start |
Ende |
Verfügbarkeit |
Standort |
Anmelden |
---|---|---|---|---|
26.8.2024 (Montag) |
27.8.2024 (Dienstag) |
Kurs gelaufen - Hinterlasse Kommentar |
- |
|
|
|
|
|
|
10.2.2025 (Montag) |
11.2.2025 (Dienstag) |
Einige Plätze frei |
Überregional |
|
24.3.2025 (Montag) |
25.3.2025 (Dienstag) |
Einige Plätze frei |
Überregional |
|
5.5.2025 (Montag) |
6.5.2025 (Dienstag) |
Einige Plätze frei |
Überregional |
|
16.6.2025 (Montag) |
17.6.2025 (Dienstag) |
Einige Plätze frei |
Überregional |
|